The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

نویسندگان

  • Leonardo De La Fuente
  • Jennifer K. Parker
  • Jonathan E. Oliver
  • Shea Granger
  • Phillip M. Brannen
  • Edzard van Santen
  • Paul A. Cobine
چکیده

Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilocus sequence typing of Xylella fastidiosa causing Pierce's disease and oleander leaf scorch in the United States.

Using a modified multilocus sequence typing (MLST) scheme for the bacterial plant pathogen Xylella fastidiosa based on the same seven housekeeping genes employed in a previously published MLST, we studied the genetic diversity of two subspecies, X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. sandyi, which cause Pierce's disease and oleander leaf scorch, respectively. Typing of 85 U.S....

متن کامل

Interactive effects of water stress and xylem-limited bacterial infection on the water relations of a host vine.

Xylella fastidiosa, a xylem-limited bacterial pathogen that causes bacterial leaf scorch in its hosts, has a diverse and extensive host range among plant species worldwide. Previous work has shown that water stress enhances leaf scorch symptom severity and progression along the stem in Parthenocissus quinquefolia infected by X. fastidiosa. The objective here was to investigate the mechanisms un...

متن کامل

Vector preference for hosts differing in infection status: sharpshooter movement and Xylella fastidiosa transmission

1. Epidemiological theory predicts that vector preference for hosts differing in infection status (i.e. healthy or infected) affects disease dynamics. 2. Numerous studies have documented strong vector preference for or discrimination against infected hosts. However, the significance of these behaviours for pathogen transmission and spread has been poorly described. 3. We conducted a series of c...

متن کامل

Bacterial Leaf Scorch of Urban Trees

Bacterial leaf scorch is caused by Xylella fastidiosa Wells et al. The pathogen causes chronic leaf scorch and decline in elm, oak, sycamore, and maple. X. fastidiosa has a wide host range and is responsible for many other serious diseases including Pierce's disease of grape, phony disease of peach, and citrus variegated chlorosis. Its role in shade tree disorders has only recently been recogni...

متن کامل

Recent evolutionary radiation and host plant specialization in the Xylella fastidiosa subspecies native to the United States.

The bacterial pathogen, Xylella fastidiosa, infects many plant species in the Americas, making it a good model for investigating the genetics of host adaptation. We used multilocus sequence typing (MLST) to identify isolates of the native U.S. subsp. multiplex that were largely unaffected by intersubspecific homologous recombination (IHR) and to investigate how their evolutionary history influe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013